I want to create new substances! I want to learn technologies that are beneficial to the environment!
We conduct education and research that combines the science field of physics and material science, which explores everything from the truths and laws of nature to the essence of familiar materials and substances, with informatics (the science and engineering of information), which provides the means to extract and utilize data related to essences.
1年次から2年次前期までの期間に一般教養科目、学部および学科共通(自然科学系)科目および情報系科目の一部を履修し、コミュニケーション能力と社会的教養を身につけるとともに、自然科学(数学、物理学、化学、生物学)に関する幅広い知識と情報科学に関する基本的な知識を修得します。2年次後期以降は本コースにおいて、自然界の真理・法則を記述する物理学を物質や素材、材料へ応用するために、物理数学系、力学系、電磁気学系、熱・統計力学系、量子物理系、物質科学系、材料科学系に分けて、それぞれの分野の科目を体系的に履修。併せて、情報系科目で修得した知識を専門科目において活用し、実践的な情報手段への展開について学修します。
First year
一般教養科目として人と社会に関する科目、外国語科目、地域連携科目、自然科学系の共通科目として数学、物理学、化学、生物学、情報系科目として情報セキュリティ、データサイエンス、プログラミングそれぞれの基礎を主に学びます。
Second Year
「物質変換論」「生物物質化学」「振動・波動論」「物質科学」などの科目を通して自然科学に関する内容を分野横断的に学び、また「現代情報学概論」「確率論」「統計的データ分析」「情報システム概論」などの科目を通して情報科学に関する内容を展開します。後期からそれぞれのコースでの専門科目の履修が始まります。
Third Year
2年次後期からの引き続きでコース専門科目を中心に学びます。「量子力学」「電磁気学」「統計力学」「固体物理」「光物理工学」「量子物質科学」「材料科学」などの科目を履修し、当該分野に関わる専門知識を広く修得するとともに、それらを統合して活用するために、コンピュータなどを援用した実験や演習を行います。
Fourth Year
The main part of learning in the fourth year is practical, through graduation research. By applying the knowledge acquired up to that point to problems set in each field, students will make their knowledge more essential and develop their problem-solving skills.
This is an important field of study for understanding various functional materials that are essential in our high-tech society, and students learn about the bonding patterns of atoms in crystals, methods for analyzing atomic arrangements using X-rays, and the propagation of lattice (atomic) vibrations. In "Solid State Physics B," which builds on this foundation, students further utilize basic physics, quantum mechanics, and statistical mechanics to understand the behavior of electrons in crystals, and develop this into the specifics of functional materials in "Materials Science" and "Quantum Matter Science."
"Strong correlation" refers to a system in which electrons and other particles in a substance interact strongly with each other.
Representative phenomena of strongly correlated states include superconductivity, heavy fermion states, and giant magnetoresistance.
These phenomena are expected to bring about a revolution in energy and electronics materials. In order to pursue unique research, our laboratory focuses on amorphous alloys, whose constituent atoms have a random structure, and is developing "strongly correlated amorphous alloys," which have hardly been studied anywhere in the world. We aim to elucidate the superconducting phenomena and heavy electron states realized in strongly correlated amorphous alloys, and develop next-generation energy and electronics materials.
Research Field
Strong correlation properties
Main research themes